
www.manaraa.com

Type-based Data Structure Verification ∗

Ming Kawaguchi
University of California, San Diego

mwookawa@cs.ucsd.edu

Patrick Rondon
University of California, San Diego

prondon@cs.ucsd.edu

Ranjit Jhala
University of California, San Diego

jhala@cs.ucsd.edu

Abstract
We present a refinement type-based approach for the static verifica-
tion of complex data structure invariants. Our approach is based on
the observation that complex data structures are typically fashioned
from two elements: recursion (e.g., lists and trees), and maps (e.g.,
arrays and hash tables). We introduce two novel type-based mecha-
nisms targeted towards these elements: recursive refinements and
polymorphic refinements. These mechanisms automate the chal-
lenging work of generalizing and instantiating rich universal invari-
ants by piggybacking simple refinement predicates on top of types,
and carefully dividing the labor of analysis between the type system
and an SMT solver [6]. Further, the mechanisms permit the use of
the abstract interpretation framework of liquid type inference [22]
to automatically synthesize complex invariants from simple logi-
cal qualifiers, thereby almost completely automating the verifica-
tion. We have implemented our approach in DSOLVE, which uses
liquid types to verify OCAML programs. We present experiments
that show that our type-based approach reduces the manual anno-
tation required to verify complex properties like sortedness, bal-
ancedness, binary-search-ordering, and acyclicity by more than an
order of magnitude.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Reliability, Verification

Keywords Dependent Types, Hindley-Milner, Predicate Abstrac-
tion, Type Inference

1. Introduction
Recent advances in Satisfiability Modulo Theories (SMT) solving,
Model Checking and Abstract Interpretation have made it possible
to build tools that automatically verify safety properties of large
software systems. However, the inability of these tools to automati-

∗ This work was supported by NSF CAREER grant CCF-0644361, NSF
PDOS grant CNS-0720802, NSF Collaborative grant CCF-0702603, and a
gift from Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00.

cally reason about data structures severely limits the kinds of prop-
erties they can verify.

The challenge of automating data structure verification stems
from the need to reason about relationships between the unbounded
number of values comprising the structure. In SMT and theorem
proving based approaches, manual effort is needed to help the
prover to generalize relationships over specific values into universal
facts that hold over the structure, and dually, to instantiate quanti-
fied facts to obtain relationships over particular values. In model
checking and abstract interpretation based approaches, manual ef-
fort is needed to design, for each data structure, an abstract domain
that is capable of generalizing and instantiating relevant relation-
ships.

Types provide a robust means for reasoning about coarse-
grained properties of an unbounded number of values. For exam-
ple, if a variable x is of the type int list, then we are guaranteed
that every value in the list is an integer. Similarly, if a variable g
is of the type (int, int) Map.t, then we are guaranteed that g is a
hash-map where every key is an integer that is mapped to another
integer. Modern type systems automatically generalize such global
properties from local properties of the individual values added to
the structure, and dually, automatically instantiate the properties
when the structures are accessed.

In this paper, we show how coarse-grained types can be refined
with simple, quantifier-free predicates to yield a framework that is
expressive enough to enable the specification of a variety of com-
plex data structure properties, yet structured enough to enable au-
tomatic verification and inference of the properties. We reconcile
expressiveness and automation through two novel type refinement
mechanisms targeted towards the two elements from which com-
plex structures are fashioned—recursion (e.g., lists and trees) and
maps (e.g., arrays and hash tables).

The first mechanism, recursive refinements, allows the recursive
type that encodes a structure to be refined with a matrix of predi-
cates that individually refine the elements of the recursive type. Re-
cursive refinements allow us to express uniform properties, for ex-
ample that a list contains values greater than some program variable
i, abbreviated as {ν :int | i < ν} list. Further, by recursively
propagating the matrix when the type is folded or unfolded, the
mechanism allows us to algorithmically analyze rich nested prop-
erties like sortedness, distinctness and binary-search-ordering.

The second mechanism, polymorphic refinements, allows the
polymorphic type schemes of map data types to be refined,
enabling the types of stored values to depend on the keys
used to access them. For example, the polymorphic refinement
type (i :α, β) Map.t corresponds to a hash-map where each
key i has the (refined) type α, and is mapped to a value
of type β, which can depend on the key i. For example,
(i :int, {ν :int | i < ν}) Map.t specifies a hash-map where each
integer key is mapped to a value greater than the key. Suppose that
the edge-adjacency relation of a graph is represented as a hash-
map that maps each node’s integer identifier to its list of succes-

www.manaraa.com

sors. Then, (i :int, {ν :int | i < ν} list) Map.t specifies that
the graph is acyclic, as each successor is greater than its source.

Our key insight is that, by piggybacking quantifier-free refine-
ment predicates on top of types, the complementary strengths of
types and SMT solvers can be harnessed to automatically verify
data structures. The typing rules encode an algorithm for quantifier
generalization and instantiation, while subtyping reduces quanti-
fied relationships into quantifier-free checks over simple predicates
which can then be efficiently discharged by an SMT solver. Fur-
ther, we can use the abstract interpretation framework of liquid
types [22] to automatically infer refinements from a set of simple
logical qualifiers, thereby eliminating the prohibitive cost of writ-
ing type annotations for all functions and polymorphic instantia-
tions.

We have implemented recursive and polymorphic refinements
in DSOLVE, a tool that infers liquid types for OCAML pro-
grams. We describe experiments using DSOLVE to verify a
variety of complex data structure invariants, including sorted-
ness, balancedness, binary-search-ordering, variable ordering, set-
implementation, heap-implementation, and acyclicity, on several
benchmarks including textbook data structures, such as sorted lists,
union-find, splay heaps, AVL trees, red-black trees, and heavily-
used libraries implementing stable sort, heaps, associative maps,
extensible vectors, and binary decision diagrams. Previously, the
verification of such properties required significant manual anno-
tations in the form of loop invariants, pre- and post- conditions,
and proof scripts totaling several times the code size. In contrast,
DSOLVE is able to verify complex properties using a handful of
simple qualifiers amounting to 3% of the code size.

2. Overview
We begin with an overview of our type-based verification approach.
First, we review simple refinement and liquid types. Next, we
describe recursive and polymorphic refinements, and illustrate how
they can be used to verify data structure invariants.

Refinement Types. Our system is built on the notion of refining
ML types with predicates over program values that specify addi-
tional constraints which are satisfied by all values of the type [2, 9].
Base values, for example, those of type integer (denoted int), can
be described as {ν :int | e} where ν is a special value variable
not appearing in the program, and e is a boolean-valued expression
constraining the value variable called the refinement predicate. In-
tuitively, the base refinement predicate specifies the set of values c
of the base type B such that the predicate e[c/ν] evaluates to true.
For example, {ν :int | ν ≤ n} specifies the set of integers whose
value is less than or equal to the value of the variable n. We use
the base refinements to build up dependent function types, written
x :T1→T2. Here, T1 is the domain type of the function, and the for-
mal parameter x may appear in the base refinements of the range
type T2. For example, x :int→{ν :int | x ≤ ν} is the type of a
function that takes an input integer and returns an integer greater
than the input. Thus, the type int abbreviates {ν :int | >}, where
> and ⊥ abbreviate true and false respectively.

Liquid Types. A logical qualifier is a boolean-valued expression
(i.e., predicate) over the program variables, the special value vari-
able ν which is distinct from the program variables, and the special
placeholder variable ? that can be instantiated with program vari-
ables. We say that a qualifier q matches the qualifier q′ if replacing
some subset of the free variables in q with ? yields q′. For example,
the qualifier i ≤ ν matches the qualifier ? ≤ ν. We write Q? for
the set of all qualifiers not containing ? that match some qualifier
in Q. In the rest of this section, let Q be the qualifiers

Q = {0 < ν, ? ≤ ν}.

A liquid type over Q is a dependent type where the refinement
predicates are conjunctions of qualifiers from Q?. We write liquid
type when Q is clear from the context. We can automatically infer
refinement types by requiring that certain expressions like recursive
functions have liquid types [22].
Safety Verification. Refinement types can be used to statically
prove safety properties by encoding appropriate preconditions into
the types of primitive operations. For example, to prove that no
divide-by-zero or assertion failures occur at run-time, we can type
check the program using the types int→{ν :int | ν 6= 0}→int
and {ν :bool | ν}→unit for division and assert respectively.

2.1 Recursive Refinements
The first building block for data structures is recursion, formalized
using recursive types, which is used to fashion structures like lists
and trees. The key idea behind recursive refinements is that recur-
sive types can be refined using a matrix of predicates, where each
predicate applies to a particular element of the recursive type. For
ease of exposition, we consider recursive types whose body is a
sum-of-products. Each product can be refined using a product re-
finement, which is a vector of predicates where the jth predicate
refines the jth element of the product. Each sum-of-products (and
hence the entire recursive type), can be refined with a recursive re-
finement, which is a vector of product refinements, where the ith

product refinement refines the ith element of the sum.
Uniform Refinements. The ML type for integer lists is:

µt.Nil + Cons〈x1 :int, x2 : t〉
a recursive sum-of-products which we abbreviate to int list.
We specify a list of integers each of which satisfies a
predicate p as (〈〈〉; 〈p; >〉〉) int list. For example,
(〈〈〉; 〈i ≤ ν; >〉〉) int list specifies lists of integers greater
than some program variable i. This representation reduces
specification and inference to determining which logical qualifiers
apply at each position of the refinement matrix. In the sequel, for
any expression e and relation ./ we define the abbreviation ρe

./ as:

ρe
./

.
= 〈〈〉; 〈e ./ ν; >〉〉 (1)

To see how such uniform refinements can be used for verifica-
tion, consider the program in Figure 1. The function range takes
two integers, i and j, and returns the list of integers i, . . . , j. The
function harmonic takes an integer n and returns the nth (scaled)
harmonic number. To do so, harmonic first calls range to get the
list of denominators 1, . . . , n, and then calls List.fold left with
an accumulator to compute the harmonic number. To prove that the
divisions inside harmonic are safe, we need to know that all the
integers in the list is are non-zero. Using Q, our system infers:

range :: i :int→j :int→(ρi
≤) int list

By substituting the actuals for the formals in the inferred
type for range, our system infers that the variable ds has
the type: (ρ1

≤) int list. As the polymorphic ML type for
List.fold left is ∀α, β.(α→β→α)→α→β list→α, our sys-
tem infers that, at the application to List.fold left inside
harmonic, α and β are respectively instantiated with int and
{ν :int | 0 < ν}, and hence, that the accumulator has the type:

s :int→k :{ν :int | 0 < ν}→int

As k is strictly greater than 0, our system successfully typechecks
the application of the division operator /, proving the program “di-
vision safe”. Hence, by refining the base types that appear inside re-
cursive types, we can capture invariants that hold uniformly across
all the elements within the recursively defined value.
Nested Refinements. The function range returns an increasing se-
quence of integers. Recursive refinements can capture this invariant

www.manaraa.com

let rec range i j =
if i > j then

[]
else

let is = range (i+1) j in
i::is

let harmonic n =
let ds = range 1 n in
List.fold_left

(fun s k -> s + 10000/k)
0 ds

Figure 1. Divide-by-zero

let rec insert x ys =
match ys with
| [] -> [x]
| y::ys’ ->

if x < y then x::y::ys’
else y::(insert x ys’)

let rec insertsort xs =
match xs with
| [] -> []
| x::xs’ ->

insert x (insertsort xs’)

Figure 2. Insertion Sort

let fib i =
let rec f t0 n =

if mem t0 n then
(t0, get t0 n)

else if n <= 2 then
(t0, 1)

else
let (t1,r1) = f t0 (n-1) in
let (t2,r2) = f t1 (n-2) in
let r = r1 + r2 in
(set t2 n r, r) in

snd (f (new 17) i)

Figure 3. Memoization

let rec build_dag (n, g) =
let node = random () in
if (0>node || node>=n) then

(n, g)
else

let succs = get g node in
let succs’ = (n+1)::succs in
let g’ = set g node succs’ in
build_dag (n+1, g’)

let g0 = set (new 17) 0 []
let (_,g1) = build_dag (1, g0)

Figure 4. Acyclic Graph

by applying the recursive refinement to the µ-bound variables in-
side the recursive type. For each type τ define:

τ list≤
.
= µt.Nil + Cons〈x1 :τ , x2 : (ρx1

≤) t〉 (2)

Thus, a list of increasing integers is int list≤. This succinctly
captures the fact that the list is increasing, since the result of
“unfolding” the type by substituting each occurrence of t with the
entire recursively refined type is:

Nil + Cons〈x′1 :int, x′2 : (ρ
x′
1
≤) int list≤〉

where x′1, x
′
2 are fresh names introduced for the top-level “head”

and “tail”. Intuitively, this unfolded sum type corresponds to a value
that is either the empty list or a cons of a head x′1 and a tail which
is an increasing list of integers greater than x′1.

For inference, we need only find which qualifiers flow into
the recursive refinement matrices. Using Q, our system infers that
range returns an increasing list of integers no less than i:

range :: i :int→j :int→(ρi
≤) int list≤

As another example, consider the insertion sort function from
Figure 2. In a manner similar to the analysis for range, using just
Q, and no other annotations, our system infers that insert has the
type x :α→ys :α list≤→α list≤, and hence that program cor-
rectly sorts lists. Furthermore, the system infers that insertsort
has the type xs :α list→α list≤.
Structure Refinements. Suppose we wish to check that
insertsort’s output list has the same set of elements as the in-
put list. We first specify what we mean by “the set of elements” of
the list using a measure, an inductively-defined, terminating func-
tion that we can soundly use in refinements. The following specifies
the set of elements in a list:

measure elts = [] -> empty
| x::xs -> union (single x) (elts xs)

where empty, union and single are primitive constants corre-
sponding to the respective set values and operations. Using just the
measure specification and the SMT solver’s decidable theory of sets
our system infers that insertsort has the type:

xs :α list→{ν :α list≤ | elts ν = elts xs}
i.e., the output list is sorted and has the same elements as the input
list. In Section 6 we show how properties like balancedness can be
verified by combining measures (to specify heights) and recursive
refinements (to specify balancedness at each level).

2.2 Polymorphic Refinements
The second building block for data structures is finite maps, such
as arrays, vectors, hash tables, etc. The classical way to model
maps is using the array axioms [15], and by using algorithmically
problematic, universally quantified formulas to capture properties

over all key-value bindings. Polymorphic refinements allow the
implicit representation of universal map invariants within the type
system and provide a strategy for generalizing and instantiating
quantifiers in order to verify and infer universal map invariants.

To this end, we extend the notion of parametric polymorphism
to include refined polytype variables and schemas. Using poly-
morphic refinements, we can give a polymorphic map the type
(i :α, β) Map.t. Intuitively, this type describes a map where ev-
ery key i of type α is mapped to a value of type β and β can
refer to i. For example, if we instantiate α and β with int and
{ν :int | 1 < ν ∧ i− 1 < ν}, respectively, the resulting type de-
scribes a map from integer keys i to integer values strictly greater
than 1 and i− 1.
Memoization. Consider the memoized fibonacci function fib in
Figure 3. The example is shown in the SSA-converted style of Ap-
pel [1], with t0 being the input name of the memo table, and t1
and t2 the names after updates. To verify that fib always returns
a value greater than 1 and (the argument) i − 1, we require the
universally quantified invariant that every key j in the memo table
t0 is mapped to a value greater than 1 and j − 1. Using the quali-
fiers {1 ≤ ν, ?− 1 ≤ ν}, our system infers that the polytype vari-
ables α and β can be instantiated as described above, and so the
map t0 has type (i :int, {ν :int | 1 ≤ ν ∧ i− 1 ≤ ν}) Map.t,
i.e., every integer key i is mapped to a value greater than 1
and i − 1. Using this, the system infers that fib has type
i :int→{ν :int | 1 ≤ ν ∧ i− 1 ≤ ν}.
Directed Graphs. Consider the function build dag from Fig-
ure 4, which represents a directed graph with the pair (n, g) where
n is the number of nodes of the graph, and g is a map that encodes
the link structure by mapping each node, an integer less than n,
to the list of its directed successors, each of which is also an inte-
ger less than n. In each iteration, the function build dag randomly
chooses a node in the graph, looks up the map to find its successors,
creates a new node n + 1 and adds n + 1 to the successors of the
node in the graph. As each node’s successors are greater than the
node, there can be no cycles in the graph. Using just the qualifiers
{ν ≤ ?, ? < ν} our system infers that the function build dag in-
ductively constructs a directed acyclic graph. Formally, the system
infers that g1 has type

DAG
.
= (i :int, (〈〈〉; 〈i < ν; >〉〉) int list) Map.t (3)

which specifies that each node i has successors that are strictly
greater than i. Thus, by combining recursive and polymorphic re-
finements over simple quantifier-free predicates, our system infers
complex shape invariants about linked structures.

3. Language
We begin by reviewing the core language NanoML from [22], by
presenting its syntax and static semantics. NanoML has a strict,
call-by-value semantics, formalized using a small-step operational

www.manaraa.com

e ::= Expressions:
| x variable
| c constant
| λx.e abstraction
| x x application
| if e then e else e if-then-else
| let x = e in e let-binding
| fix x.e fixpoint
| [Λα]e type-abstraction
| [τ]e type-instantiation

Q ::= Liquid Refinements
| > true
| q qualifier in Q?

| Q ∧Q conjunction
B ::= Base:

| int integers
| bool booleans
| α type variable

A(B) ::= Unrefined Skeletons:
| B base
| x :T(B)→T(B) function

T(B) ::= Refined Skeletons:
| {ν :A(B) | B} refined type

S(B) ::= Type Schema Skeletons:
| T(B) monotype
| ∀α.S(B) polytype

τ, σ ::= T(>), S(>) Types, Schemas
T, S ::= T(E), S(E) Depend. Types, Schemas

T̂ , Ŝ ::= T(Q), S(Q) Liquid Types, Schemas

Figure 5. NanoML: Syntax

semantics [21]. In Sections 4 and 5, we extend NanoML with
recursive and polymorphic refinements respectively.
Expressions. The expressions of NanoML, summarized in Fig-
ure 5, include variables, primitive constants, λ−abstractions and
function application. In addition, NanoML has let-bindings and
recursive function definitions using the fixpoint operator fix. Our
type system conservatively extends ML-style parametric polymor-
phism. Thus, we assume that the ML type inference algorithm au-
tomatically places appropriate type generalization and instantiation
annotations into the source expression. Finally, we assume that, via
α-renaming, each variable is bound at most once in an environment.
Types and Schemas. NanoML has a system of base types, function
types, and ML-style parametric polymorphism using type variables
α and schemas where the type variables are quantified at the out-
ermost level. We organize types into unrefined types, which have
no top-level refinement predicates, but which may be composed of
types which are themselves refined, and refined types, which have
a top-level refinement predicate. An ML type (schema) is a type
(schema) where all the refinement predicates are >. A liquid type
(schema) is a type (schema) where all the refinement predicates
are conjunctions of qualifiers from Q?. We write τ and σ for ML
types and schemas, T and S for refinement types and schemas, and
T̂ and Ŝ for liquid types and schemas. We write τ to abbreviate
{ν :τ | >}, and τ to abbreviate {ν :τ | ⊥}. When τ is clear from
context, we write {e} to abbreviate {ν :τ | e}.
Instantiation. We write Ins(S, α, T) for the instantiation of the
type variable α in the scheme S with the refined type T . Intuitively,
Ins(S, α, {ν :T ′ | e′}) is the refined type obtained by replacing
each occurrence of {ν :α | e} in S with {ν :T ′ | e ∧ e′}.
Constants. The basic units of computation in NanoML are primi-
tive constants, which are given refinement types that precisely cap-
ture their semantics. Primitive constants include basic values, like

integers and booleans, as well as primitive functions that define ba-
sic operations. The input types for primitive functions describe the
values for which each function is defined, and the output types de-
scribe the values returned by each function.
Next, we give an overview of our static type system, by describing
environments and summarizing the different kinds of judgments.
Environments and Shapes. A type environment Γ is a sequence of
type bindings of the form x :S and guard predicates e. The guard
predicates are used to capture constraints about “path” information
corresponding to the branches followed in if-then-else expressions.
The shape of a refinement type schema S, written as Shape(S),
is the ML type schema obtained by replacing all the refinement
predicates with > (i.e., “erasing” the refinement predicates). The
shape of an environment is the ML type environment obtained by
applying Shape to each type binding and removing the guards.
Judgments. Our system has four kinds of judgments that relate
environments, expressions, recursive refinements and types. Well-
formedness judgments (Γ ` S) state that a type schema S is well-
formed under environment Γ. Intuitively, the judgment holds if the
refinement predicates of S are boolean expressions in Γ. Subtyping
judgments (Γ ` S1 <: S2) state that the type schema S1 is a
subtype of the type schema S2 under environment Γ. Intuitively, the
judgments state that, under the value-binding and guard constraints
imposed by Γ, the set of values described by S1 is contained in the
set of values described by S2. Typing judgments (Γ `Q e :S) state
that, using the logical qualifiers Q, the expression e has the type
schema S under environment Γ. Intuitively, the judgments state
that, under the value-binding and guard constraints imposed by Γ,
the expression e will evaluate to a value described by the type S.
Decidable Subtyping and Liquid Type Inference. In order to
determine whether one type is a subtype of another, our system
uses the subtyping rules (Figure 6) to generate a set of implication
checks over refinement predicates. To ensure that these implica-
tion checks are decidable, we embed the implication checks into
a decidable logic of equality, uninterpreted functions, and linear
arithmetic (EUFA) that can be decided by an SMT solver [6]. As
the types of branches, functions, and polymorphic instantiations are
liquid, we can automatically infer liquid types for programs using
abstract interpretation [22].
Soundness. We have proven the soundness of the type system by
showing that if an expression is well-typed then we are guaranteed
that evaluation does not get “stuck”, i.e., at run-time, every primi-
tive operation receives valid inputs. We defer the details about the
judgments, the proof of soundness, and type inference to [21].

4. Recursive Refinements
We now describe how the core language is extended with recur-
sively refined types which capture invariants of recursive data struc-
tures. First, we describe how we extend the syntax of expressions
and types, and correspondingly extend the dynamic semantics. Sec-
ond, we describe measures, a special class of functions that are
syntactically guaranteed to terminate, thereby allowing us to use
them to refine recursive types with predicates that capture struc-
tural properties of recursive values. Finally, we extend the static
type system by formalizing the derivation rules that deal with re-
cursive values, and illustrate how the rules are applied to check
expressions.

4.1 Syntax and Dynamic Semantics
Figure 7 describes how the expressions and types of NanoML are
extended to include recursively-defined values. The language of
expressions includes tuples, value constructors, folds, unfolds, and
pattern-match expressions. The language of types is extended with

www.manaraa.com

Well-Formed Types Γ ` S

Shape(T) = T

Γ ` T
[WF-REFLEX]

Γ ` T Γ; ν :Shape(T) ` e : bool

Γ ` {ν :T | e}
[WF-REFINE]

Γ ` T Γ; x :Shape(T) ` T
′

Γ ` x :T→T
′ [WF-FUN]

Decidable Subtyping Γ ` S1 <: S2

Γ ` T <: T
[<:-REFLEX]

Γ ` T <: T
′ Valid([[Γ]] ∧ [[e]] ⇒ [[e

′
]])

Γ ` {ν :T | e} <: {ν :T
′ | e

′}
[<:-REFINE]

Γ ` T2 <: T1 Γ; x2 :T2 ` T
′
1[x2/x1] <: T

′
2

Γ ` x1 :T1→T
′
1 <: x2 :T2→T

′
2

[<:-FUN]

Liquid Type Checking Γ `Q e : S

Γ `Q e : S Γ ` S <: S
′

Γ `Q S
′

Γ `Q e : S
′ [L-SUB]

Γ(x) = {ν :T | e}
Γ `Q x : {ν :T | e ∧ ν = x}

[L-VAR]
Γ `Q c : ty(c)

[L-CONST]

Γ ` x : T̂x→T̂ Γ; x : T̂x `Q e : T̂

Γ `Q (λx.e) : x : T̂x→T̂
[L-FUN]

Γ `Q x1 : x :T→T
′

Γ `Q x2 : T

Γ `Q x1 x2 : T
′
[x2/x]

[L-APP]

Γ ` T̂ Γ `Q e1 : bool Γ; e1 `Q e2 : T̂ Γ; ¬e1 `Q e3 : T̂

Γ `Q if e1 then e2 else e3 : T̂
[L-IF]

Γ ` T̂ Γ `Q e1 : S1 Γ; x :S1 `Q e2 : T̂

Γ `Q let x = e1 in e2 : T̂
[L-LET]

Γ ` Ŝ Γ; x : Ŝ `Q e : Ŝ

Γ `Q fix x.e : Ŝ
[L-FIX]

Γ `Q e : S α 6∈ Γ

Γ `Q [Λα]e : ∀α.S
[L-GEN]

Γ ` T Shape(T) = τ Γ `Q e : ∀α.S

Γ `Q [τ]e : Ins(S, α, T)
[L-INST]

Figure 6. Liquid Type Checking Rules

product types, tagged sum types, and a system of iso-recursive
types. We assume that appropriate fold and unfold annotations
are automatically placed in the source at the standard construction
and matching sites, respectively [19]. We assume that different
types use disjoint constructors, and that pattern match expressions
contain exactly one match binding for each constructor of the
appropriate type. The run-time values are extended with tuples, tags
and explicit fold/unfold values in the standard manner [19].

Notation. We write 〈Z〉 for a sequence of values of the kind Z.
We write (Z; 〈Z〉) for a sequence of values whose first element
is Z, and the remaining elements are 〈Z〉. We write 〈〉 for the
empty sequence. As for functions, we write dependent tuple types
using a sequence of name-to-type bindings, and allow refinements
for “later” elements in the tuple to refer to previous elements. For

e ::= . . . Expressions:
| 〈e〉 tuple
| C〈e〉 constructor
| match e with |i Ci〈xi〉 7→ ei match-with
| unfold e unfold
| fold e fold

ε ::= m | c | x | ε ε M-Expressions
M ::= (m, 〈Ci〈xi〉 7→ εi〉, τ, µt.ΣiCi〈xi :τi〉) Measures
ρ(B) ::= 〈〈B〉∗〉∗ Recursive Refinement
A(B) ::= . . . Unrefined Skeletons:

| 〈x :T(B)〉 product
| ΣiCi〈x :T(B)〉 sum
| (ρ(B)) t recursive type variable
| (ρ(B)) µt.ΣiCi〈x :T(B)〉 recursive type

Figure 7. Recursive Refinements: Syntax

example, 〈x1 :int; x2 :{ν :int | x1 ≤ ν}〉 is the type of pairs of
integers where the second element is greater than the first.

Measures. Many important attributes of recursive structures, e.g.,
the length or set of elements of a list, or the height of a tree, are
most naturally specified using recursive functions. Unfortunately,
the use of arbitrary, potentially non-terminating recursive functions
in refinement predicates leads to unsoundness. Thus, we cannot
use refinements containing arbitrary functions to encode invariants
over recursive attributes. We solve this problem by representing
recursively-defined attributes using measures, a class of first order
functions from the recursive type to any range type. Measures are
syntactically guaranteed to terminate, and so we can soundly use
them inside refinements. Further, because their domain is the recur-
sive type, we can automatically instantiate them at the appropriate
fold and unfold expressions.

Figure 7 shows the syntax of measure functions. A measure
name m is a special variable drawn from a set of measure names.
A measure expression ε is an expression drawn from a restricted
language of variables, constants, measure names and application.
A measure for a recursive (ML) type µt.ΣiCi〈xi :τi〉 of type τ
is a quadruple: (m, 〈Ci〈xi〉 7→ εi〉, τ, µt.ΣiCi〈xi :τi〉). A measure
specification is an ordered sequence of measures. Figure 8 shows
the rules used to check that a measure specification (i.e., 〈M〉) is
well-formed (i.e., ∅ ` 〈M〉). As measures are defined by structural
induction, they are well-founded and hence total.

4.2 Static Semantics
The derivation rules pertaining to recursively refined types, includ-
ing the rules for product, sum, and recursive types, as well as
construction, match-with, fold and unfold expressions are shown
in Figure 8. The fold and unfold rules use a judgment called ρ-
application, written (ρ) T . T ′. Intuitively, this judgment states
that when a recursive refinement ρ is applied to a type T , the result
is a sum type T ′ with refinements from ρ. Next, we describe each
judgment and the rules relevant to it.

ρ-Application and Unfolding. Formally, a recursive type (ρ) µt.T
is unfolded in two steps. First, we apply the recursive refinement
ρ to the body of the recursive type T to get the result T ′ (writ-
ten (ρ) T . T ′). Second, in the result of the application T ′, we
replace the µ-bound recursive type variable t with the entire origi-
nal recursive type ((ρ) µt.T), and normalize by replacing adjacent
refinements (ρ)(ρ′) with a new refinement ρ′′ which contains the
conjunctions of corresponding predicates from ρ and ρ′.

Example. Consider the type which describes increasing lists of
integers greater than some x′1:

(ρ
x′
1
≤) µt.Nil + Cons〈x1 :int, x2 : (ρx1

≤) t〉

www.manaraa.com

Measure Well-formedness Γ ` 〈M〉

Γ; m :µt.ΣiCi〈xi :τi〉→τ ` 〈M〉
∀i : Γ; m :µt.ΣiCi〈xi :τi〉→τ ; 〈xi :τi〉 ` εi : τ

Γ ` (m, 〈Ci〈xi〉 7→ εi〉, τ, µt.ΣiCi〈xi :τi〉); 〈M〉
[WF-M]

ρ-Application (ρ) T . T ′

fresh x
′
(〈e〉[x′

/x]) 〈x :T [x
′
/x]〉 . 〈x′

:T
′〉

(e; 〈e〉) (x :{ν :T | ex}; 〈x :T 〉) . (x
′
:{ν :T | e ∧ ex}; 〈x′

:T
′〉)

[.-PROD]

∀i : (ρi) 〈xi :Ti〉 . 〈x′
i :T

′
i 〉

(ρ) ΣiCi〈xi :Ti〉 . ΣiCi〈x′
i :T

′
i 〉

[.-SUM]

Well-Formed Types Γ ` S

Γ ` T Γ; x :Shape(T) ` 〈x :T 〉
Γ ` x :T ; 〈x :T 〉

[WF-PROD]

∀i : Γ ` 〈xi :Ti〉
Γ ` ΣiCi〈xi :Ti〉

[WF-SUM]

(ρ) T . T
′

Γ ` T
′
[Shape(µt.T)/t]

Γ ` (ρ) µt.T
[WF-REC]

Decidable Subtyping Γ ` S1 <: S2

Γ ` T <: T
′

Γ; x :T ` 〈x :T 〉 <: 〈x′
:T

′
[x/x

′
]〉

Γ ` x :T ; 〈x :T 〉 <: x
′
:T

′
; 〈x′

:T
′〉

[<:-PROD]

∀i : Γ ` 〈xi :Ti〉 <: 〈x′
i :T

′
i 〉

Γ ` ΣiCi〈xi :Ti〉 <: ΣiCi〈x′
i :T

′
i 〉

[<:-SUM]

(ρ1) T1 . T
′
1 (ρ2) T2 . T

′
2

τ = Shape(µt.T1) = Shape(µt.T2)
Γ ` T

′
1[τ/t] <: T

′
2[τ/t]

Γ ` (ρ1) µt.T1 <: (ρ2) µt.T2
[<:-REC]

Liquid Type Checking Γ `Q e : S

Γ ` (ρ̂) µt.T̂ (ρ) T̂ . T̂
′

Γ `Q e : {ν : T̂
′
[(ρ̂) µt.T̂ /t] | e

′}
Γ `Q fold e : {ν : (ρ̂) µt.T̂ | e

′}
[L-FOLD-M]

(ρ) T . T
′

Γ ` e : {ν : (ρ) µt.T | e
′}

Γ ` unfold e : {ν :T
′
[(ρ) µt.T/t] | e

′}
[L-UNFOLD-M]

Γ `Q 〈e〉 : 〈x :T 〉
Γ `Q Cj〈e〉 : {ν :Cj〈x :T 〉+ Σi6=jCi〈xi :τi〉 | ∧mm(ν) = εj(〈e〉)}

[L-SUM-M]

Γ ` e : ΣiCi〈xi :Ti〉 Γ ` T

∀i Γ; 〈xi :Ti〉; ∧mm(e) = εi(〈xi〉) ` ei : T̂

Γ ` match e with |i Ci〈xi〉 7→ ei : T̂
[L-MATCH-M]

Figure 8. Recursive Refinements: Static Semantics

To unfold this type, we first apply the recursive refinement ρ
x′
1
≤ to

the recursive type’s body, Nil + Cons〈x1 :int, x2 : (ρx1
≤)t〉. To

apply the recursive refinement to the above sum type, we use rule
[.-SUM] to apply the product refinements 〈〉 and 〈x′1 ≤ ν; >〉 of
ρ

x′
1
≤ to the products corresponding to the Nil and Cons construc-

tors, respectively. To apply the refinements to each product, we use
the rule [.-PROD] to obtain the result:

Nil + Cons〈x′′1 :{ν :int | x′1 ≤ ν}, x′′2 : (ρ
x′′
1
≤)t〉 (4)

Notice that the result is a sum type with fresh names for the “head”
and “tail” of the unfolded list. Observe that this renaming allows
us to soundly use the head’s value to refine the tail, via a recursive

refinement stipulating all elements in the tail are greater than the
head, x′′1 . To complete the unfolding, we replace t with the entire
recursive type and normalize to get:

Nil + Cons〈x′′1 :{ν :int | x′1 ≤ ν}, x′′2 : (ρ) int list≤〉

where ρ
.
= 〈〈〉; 〈x′1 ≤ ν ∧ x′′1 ≤ ν; >〉〉. Intuitively, the result

of the unfolding is a type that specifies an empty list, or a non-
empty list with a head greater than x′1 and an increasing tail whose
elements are greater than x′1 and x′′1 .
Well-formedness. Rule [WF-REC] checks if a recursive type
(ρ) µt.T is well-formed in an environment Γ . First, the rule applies
the refinement ρ to T , the body of the recursive type, to obtain T ′.
Next, the rule replaces the µ-bound variable t in T ′ with the shape
of the recursive type and checks the well-formedness of the result
of the substitution.
Example. When ρ>

.
= 〈〈〉; 〈>; >〉〉, the check

∅ ` (ρ>) µt.Nil + Cons〈x1 :int, x2 : (ρx1
≤) t〉

is reduced to checking, using [WF-REFINE] that in the environ-
ment where x′1 (the fresh name given to the unfolded list’s “head”)
has type int, the refinement {ν :int | x′1 ≤ ν} (applied to the el-
ements of the unfolded list’s “tail”) is well-formed.
Subtyping. Rule [<:-PROD] (resp. [<:-SUM]) determines
whether two products (resp. sums) satisfy the subtyping relation
by checking subtyping between corresponding elements.
Example. When Γ

.
= x′1 :int, the check

Γ ` 〈y1 :{x′1 < ν}, y2 :int list〉 <: 〈z1 :{x′1 6= ν}, z2 :int list〉
(5)

is reduced by [<:-PROD] to:

Γ `{ν :int | x′1 < ν} <: {ν :int | x′1 6= ν}
Γ; y1 :int `int list <: int list

[<:-REFLEX] ensures the latter. [<:-REFINE] reduces the former
to checking the validity of x′1 < ν ⇒ x′1 6= ν in EUFA.

Rule [<:-REC] determines whether the subtyping relation holds
between two recursively refined types. The rule first applies the
outer refinements to the bodies of the recursive types, then substi-
tutes the µ-bound variable with the shape (as for well-formedness),
and then checks that the resulting sums are subtypes.
Example. Consider the subtyping check

x′1 :int `(ρx′
1

<) int list <: (ρ
x′
1
6=) int list (6)

that is, the list of integers greater than x′1 is a subtype of the list of
integers distinct from x′1. Rule [<:-REC] applies the refinements
to the bodies of the recursive types and then substitutes the shapes,
reducing the above (after using [<:-SUM], [<:-PROD] and [<:-
REFLEX]) to (5). Finally, applying the rule [<:-REC] yields the
judgment

∅ `int list< <: int list6= (7)

int list<
.
= (ρ>) µt.Nil + Cons〈x1 :int, x2 : (ρx1

<) t〉
int list6=

.
= (ρ>) µt.Nil + Cons〈x1 :int, x2 : (ρx1

6=) t〉

that is, that the list of strictly increasing integers is a subtype of
the list of distinct integers. To see why, observe that after apply-
ing the trivial top-level recursive refinement ρ> to the body, sub-
stituting the shapes, and applying the [<:-SUM], [<:-PROD] and
[<:-REFLEX] rules, the check reduces to (6).
Local Subtyping. Our recursive refinements represent universally
quantified properties over the elements of a structure. Hence, we re-
duce subtyping between two recursively-refined structures to local
subtype checks between corresponding elements of two arbitrarily

www.manaraa.com

chosen values of the recursive types. The judgment [<:-REC] car-
ries out this reduction via ρ-application and unfolding and enforces
the local subtyping requirement with the final antecedent.
Typing. We now turn to the rules for type checking expressions.
Rules [L-UNFOLD-M] and [L-MATCH-M] describe how values
extracted from recursively constructed values are type checked.
First, [L-UNFOLD-M] is applied, which performs one unfolding
of the recursive type, as described above. Second, the rule [L-
MATCH-M] is used on the resulting sum type. This rule stipulates
that the entire expression has some type T̂ if the type is well-formed
in the current environment, and that, for each case of the match (i.e.,
for each element of the sum), the body expression has type T̂ in the
environment extended with: (a) the corresponding match bindings
and (b) the guard predicate that captures the relationship between
the measure of the matched expression and the variables bound by
the matched pattern.
Example. Consider the following function:

let rec sortcheck xs =
match xs with
| x::(x’::_ as xs’) ->

assert (x <= x’); sortcheck xs’
| _ -> ()

Let Γ be xs :α list≤. From rule [L-UNFOLD], we have

Γ `Qunfold xs : Nil + Cons〈x :α; xs′ : (ρx
≤) α list≤〉

For clarity, we assume that the fresh names are those used in the
match-bindings. For the Cons pattern in the outer match, we use the
rule [L-MATCH-M] to get the environment Γ′, which is Γ extended
with x :α, xs′ : (ρx

≤) α list≤. Thus, [L-UNFOLD] yields

Γ′ `Qunfold xs
′ : Nil + Cons〈x′ :{ν :α | x ≤ ν}; xs′′ : . . .〉

Hence, in the environment:

xs :α list≤; x :α; xs
′ : (ρx

≤) α list≤; x
′ :{ν :α | x ≤ ν}

which corresponds to the extension of Γ′ with the (inner) pattern-
match bindings, the argument type {ν = x ≤ x′} is a subtype of
the input type {ν} and system verifies that the assert cannot fail.

Rules [L-SUM-M] and [L-FOLD-M] describe how recursively
constructed values are type checked. First, [L-SUM-M] is applied,
which uses the constructor Cj to determine which sum type the tu-
ple should be injected into. Notice that, in the resulting sum: (a) the
refinement predicate for all other sum elements is ⊥, capturing the
fact that Cj is the only inhabited constructor within the sum value,
and (b) for each measure m defined for the corresponding recur-
sive type, a predicate specifying the value of the measure m is con-
joined to the refinement for the constructed sum. Second, the rule
[L-FOLD-M] folds the (sum) type into a recursive type.
Example. Consider the expression Cons(i, is) which
is returned by the function range from Figure 1. Let
Γ

.
= i :int; is : (ρi+1

≤) int list≤. Rule [<:-REFINE] yields:

Γ; x′1 :{i = ν} `{i + 1 ≤ ν} <: {x′1 ≤ ν ∧ i ≤ ν}

Consequently, using the rules for subtyping, we derive:

Γ; x′1 :{i = ν} `(ρi+1
≤) int list≤ <: (ρ′) int list≤ (8)

where ρ′ is 〈〈〉; 〈x′1 ≤ ν ∧ i ≤ ν; >〉〉. Using [L-PROD]:

Γ `Q(i, is) : 〈x′1 :{i = ν}; x′2 : (ρ′) int list≤〉

and so, using the subsumption rule [L-SUB] and (8) we have:

Γ `Q(i, is) : 〈x′1 :{i ≤ ν}; x′2 : (ρ′) int list≤〉

i.e., the first element of the pair is greater than i and the second
element is an increasing list of values greater than than the first
element and i. Thus, applying [L-SUM], we get:

Γ `Q Cons(i, is) : Nil+ Cons 〈x′1 :{i ≤ ν}; x′2 : (ρ′) int list≤〉
As (ρi

≤) int list≤ unfolds to the above type, [L-FOLD] yields

Γ `Q fold(Cons(i, is)) : (ρi
≤) int list≤

i.e., range returns an increasing list of integers greater than i.
Example: Measures. Next, let us type check the below expression
using the elts measure specification from Section 2.

let a = [] in let b = 1::a in
match b with x::xs -> () | [] -> assert false

Using [L-SUM-M] and [L-FOLD-M] (and [L-LET]), we derive:

∅ `QNil : {elts ν = empty}
a :{elts ν = empty} `QCons(1, a) : T1::a

where T1::a abbreviates {elts ν = union (single 1) (elts a)}.
Due to [L-UNFOLD-M] and [L-MATCH-M], the assert in the
Nil pattern-match body is checked in an environment Γ containing
a :{elts ν = empty}, b :T1::a and the guard (elts b = empty)
from the definition of elts for Nil. Under this inconsistent Γ, the
argument type {not ν} is a subtype of the input type {ν} and so the
call to assert type checks, proving the Nil case is not reachable.

4.3 Type Inference
Next, we summarize the main issues that had to be addressed to
extend the liquid type inference algorithm of [22] to the setting of
recursive refinements. For details, see [21].
Polymorphic Recursion. Recall the function insert from Fig-
ure 2. Suppose that ys is an increasing list, i.e., it has the type
α list≤. In the case when ys is not empty, and x is not less
than y, the system must infer that the list Cons(y, insert x ys′)
is an increasing list. To do so, it must reason that the recursive call
to insert returns a list of values that are (a) increasing and, (b)
greater than y. Fact (a) can be derived from the (inductively in-
ferred) output type of insert. However, fact (b) is specific to this
particular call site – y is not even in scope at other call sites, or
at the point at which insert is defined. Notice, though, that the
branch condition at the recursive call tells us that the first param-
eter passed to insert, namely, x, is greater than y. As y and ys′

are the head and tail of the increasing list ys, we know also that
every element of ys′ is greater than y. The ML type of insert is
∀α.α→α list→α list. By instantiating α at this call site with
{ν :α | y ≤ ν}, we can deduce fact (b).

This kind of reasoning is critical for establishing recursive prop-
erties. In our system it is formalized by the combination of [L-
INST], a rule for dependent polymorphic instantiation, and [L-
FIX], a dependent version of Mycroft’s rule [16] that allows the
instantiation of the polymorphic type of a recursive function within
the body of the function. Although Mycroft’s rule is known to
render ML type inference undecidable [11], this is not so for our
system, as it conservatively extends the ML type system. In other
words, since only well-typed ML programs are typable in our sys-
tem, we can use Milner’s rule to construct an ML type derivation
tree in a first pass, and subsequently use Mycroft’s rule and the
generalized types inferred in the first pass to instantiate dependent
types at (polymorphic) recursive call sites.
Conjunctive Templates. Recall from Section 3 that polymorphic
instantiation using Ins (rule [L-INST]) results in types whose re-
finements are a conjunction of the refinements applied to the orig-
inal type variables (i.e., α) within the scheme (i.e., S) and the top-
level refinements applied to the type used for instantiation (i.e., T).

www.manaraa.com

B ::= . . . Base:
| α[y/x] refined polytype variable

S(B) ::= . . . Type Schema Skeletons:
| ∀α〈x :τ〉.S(B) refined polytype schema

Well-Formed Types Γ ` S

α〈x :τ〉 ∈ Γ Γ ` y :τ

Γ ` α[y/x]
[WF-REFVAR]

Γ; α〈x :τ〉 ` S

Γ ` ∀α〈x :τ〉.S
[WF-REFPOLY]

Decidable Subtyping Γ ` S1 <: S2

α〈x :τ〉 ∈ Γ Γ ` {ν :τ | ν = y1} <: {ν :τ | ν = y2}
Γ ` α[y1/x] <: α[y2/x]

[<:-REFVAR]

Γ; α〈x :τ〉 ` S1 <: S2

Γ ` ∀α〈x :τ〉.S1 <: ∀α〈x :τ〉.S2
[<:-REFPOLY]

Liquid Type Checking Γ `Q e : S

Γ; α〈x :τ〉 `Q e : S α〈x :τ〉 6∈ Γ

Γ `Q [Λα〈x :τ〉]e : ∀α〈x :τ〉.S
[L-REFGEN]

Γ; x :τx ` T Shape(T) = τ Γ `Q e : ∀α〈x :τx〉.S
Γ `Q [τ]e : Ins(S, α, T)

[L-REFINST]

Figure 9. Polymorphic Refinements: Syntax, Static Semantics

Similarly, the normalizing of recursive refinements (i.e., collapsing
adjacent refinements (ρ)(ρ′)) results in new refinements that con-
join refinements from ρ and ρ′. Due to these mechanisms, the type
inference engine must solve implication constraints over conjunc-
tive refinement templates described by the grammar

θ ::= ε | [e/x]; θ (Pending Substitutions)
L ::= e | θ · κ ∧ L (Refinement Template)

where κ are liquid type variables [22]. We use the fact that

P ⇒ (Q ∧R) is valid iff P ⇒ Q and P ⇒ R are valid

to reduce each implication constraint over a conjunctive template
into a set of constraints over simple templates (with a single con-
junct). The iterative weakening algorithm from [22] suffices to
solve the reduced constraints, and hence infer liquid types.

5. Polymorphic Refinements
We now describe how the language is extended to capture invariants
of finite maps by describing the syntax and static semantics of
polymorphic refinements. The syntax of expressions and dynamic
semantics are unchanged.

5.1 Syntax
Figure 9 shows how the syntax of types is extended to include
polymorphically refined types (in addition to standard polymor-
phic types). First, type schemas can be universally quantified over
refined polytype variables α〈x :τ〉. Second, the body of the type
schema can contain refined polytype variable instances α[y/x].

Intuitively, the quantification over α〈x :τ〉 indicates that α can
be instantiated with a refined type containing a free variable x of
type τ . It is straightforward to extend the system to allow multiple
free variables; we omit this for clarity. A refined polytype instance
α[y/x] is a standard polymorphic type variable α with a pending
substitution [y/x] that gets applied after α is instantiated.

The polytype variable instance is syntactic sugar for
∃x.{ν :α | y = x}. That is, y serves as a witness for the existen-

tially bound x. To keep the quantification implicit, the instantia-
tion function Ins eagerly applies the pending substitution when-
ever each polytype variable is instantiated. When the polytype
variable is instantiated with a type containing other polytype in-
stances, it suffices to telescope the pending substitutions by replac-
ing α[x1/x][y/x2] with α[y/x] if x1 ≡ x2 and with α[x1/x] oth-
erwise.
Example. The following refined polytype schema signature speci-
fies the behavior of the key operations of a finite dependent map.

new ::∀α, β〈x :α〉.int→(i :α, β[i/x]) t

set ::∀α, β〈x :α〉.(i :α, β[i/x]) t→k :α→β[k/x]→(j :α, β[j/x]) t

get ::∀α, β〈x :α〉.(i :α, β[i/x]) t→k :α→β[k/x]

mem ::∀α, β〈x :α〉.(i :α, β[i/x]) t→k :α→bool

In the signature, t is a polymorphic type constructor that takes
two arguments corresponding to the types of the keys and val-
ues stored in the map. If the signature is implemented using as-
sociation lists, the type (i :α, β[i/x]) t is an abbreviation for
〈i :α, β[i/x]〉 list. In general, this signature can be implemented
by any appropriate data structure, such as balanced search trees,
hash tables, etc. The signature specifies that certain relationships
must hold between the keys and values when new elements are
added to the map (using set), and it ensures that subsequent reads
(using get) return values that satisfy the relationship. For example,
when α and β are instantiated with int and {ν :int | x ≤ ν} re-
spectively, we get a finite map (i :int, {ν :int | i ≤ ν}) t where,
for each key-value binding, the value is greater than the key. For
this map, the type for set ensures that when a new binding is added
to the map, the value to be added has the type {x ≤ ν}[k/x], which
is {k ≤ ν}, i.e., is greater than the key k. Dually, when get is used
to query the map with a key k, the type specifies that the returned
value is guaranteed to be greater than the key k.

5.2 Static Semantics
Figure 9 summarizes the rules for polymorphic refinements.
Well-formedness. We extend our well-formedness rules with a
rule [WF-REFVAR] which states that a polytype instance α[y/x] is
well-formed if: (a) the instance occurs in a schema quantified over
α〈x :τ〉, i.e., where α can have a free occurrence of x of type τ , and
(b) the free variable y that replaces x is bound in the environment
to a type τ .
Subtyping. We extend our subtyping rules with a rule [<:-
REFVAR] for subtyping refined polytype variable instances. The
intuition behind the rule follows from the existential interpretation
of the refined polytype instances and the fact that ∀ν.(ν = y1) ⇒
(ν = y2) implies y1 = y2, which implies (∃x.P ∧ x = y1) ⇒
(∃x.P ∧ x = y2) for every logical formula P in which x occurs
free. Thus, to check that the subtyping holds for any possible in-
stantiation of α containing a free x, it suffices to check that the
replacement variables y1 and y2 are equal.
Example. It is straightforward to check that each of the schemas for
set, get, etc. are well-formed. Next, let us see how the following
implementation of the get function

let rec get xs k =
match xs with
| [] -> diverge ()
| (k’,d’)::xs’ -> if k=k’ then d’ else get xs’ k

implements the refined polytype schema shown above. From the
input assumption that xs has the type 〈i :α, β[i/x]〉 list, and the
rules for unfolding and pattern matching ([L-UNFOLD-M] and [L-
MATCH-M]) we have that, at the point where d′ is returned, the
environment Γ contains the type binding d′ :β[i/x][k′/i] which,

www.manaraa.com

after telescoping the substitutions, is equivalent to the binding
d′ :β[k′/x]. Due to [L-IF], the branch condition k = k′ is in Γ,
and so Γ ` {ν :α | ν = k′} <: {ν :α | ν = k}. Thus, from rule
[<:-REFVAR], and subsumption, we derive that the then branch
has the type β[k/x] from which the schema follows.

Typing. We extend the typing rules with rules that handle re-
fined polytype generalization ([L-REFGEN]) and instantiation ([L-
REFINST]). A refined polytype variable α〈x :τ〉 can be instantiated
with a dependent type T that contains a free occurrence of x of
type τ . This is ensured by the well-formedness antecedent for [L-
REFINST] which checks that T is well-formed in the environment
extended with the appropriate binding for x. However, once T is
substituted into the body of the schema S, the different pending
substitutions at each of the refined polytype instances of α are ap-
plied and hence x does not appear free in the instantiated type,
which is consistent with the existential interpretation of polymor-
phic refinements.

Polymorphic Refinements vs. Array Axioms. Our technique of
specifying the behavior of finite maps using polymorphic refine-
ments is orthogonal, and complementary, to the classical approach
that uses McCarthy’s array axioms [15]. In this approach, one mod-
els reads and writes to arrays, or, more generally, finite maps, using
two operators. The first, Sel(m, i), takes a map m and an address i
and returns the value stored in the map at that address. The second,
Upd(m, i, v), takes a map m, an address i and a value v and re-
turns the new map which corresponds to m updated at the address
i with the new value v. The two efficiently decidable axioms

∀m, i, v. Sel(Upd(m, i, v), i) = v

∀m, i, j, v. i = j ∨ Sel(Upd(m, i, v), j) = Sel(m, j)

specify the behavior of the operators. Thus, an analysis can use
the operators to algorithmically reason about the exact contents
of explicitly named addresses within a map. For example, the
predicate Sel(m, i) = 0 specifies that m maps the key i to the
value 0. However, to capture invariants that hold for all key-value
bindings in the map, one must use universally quantified formulas,
which make algorithmic reasoning brittle and unpredictable. In
contrast, polymorphic refinements can smoothly capture and reason
about the relationship between all the addresses and values but do
not, as described so far, let us refer to particular named addresses.

We can have the best of both worlds in our system by com-
bining these techniques. Using polymorphic refinements, we can
reason about universal relationships between keys and values and
by refining the output types of set and get with the predicates
(ν = Upd(m, k, v)) and (ν = Sel(m, k)), respectively, we can si-
multaneously reason about the specific keys and values in a map.

Example. Polymorphic refinements can be used to verify properties
of linked structures, as each link field corresponds to a map from
the set of source structures to the set of link targets. For example,
a field f corresponds to a map f, a field read x.f corresponds to
get f x, and a field write x.f ← e corresponds to set f x e.
Consider the following SSA-converted [1] implementation of the
textbook find function for the union-find data structure.

let rec find rank parent0 x =
let px = get parent0 x in
if px = x then (parent0, x) else
let (parent1, px’) = find rank parent0 px in
let parent2 = set parent1 x px’ in
(parent2, px’)

The function find takes two maps as input: rank and parent0,
corresponding to the rank and parent fields in an imperative imple-
mentation, and an element x, and finds the “root” of x by transi-
tively following the parent link, until it reaches an element that

is its own parent. The function implements path-compression, i.e.,
it destructively updates the parent map so that subsequent queries
jump straight to the root. The data structure maintains the acyclic-
ity invariant that each non-root element’s rank is strictly smaller
than the rank of the element’s parent. The acyclicity invariant of
the parent map is captured by the type

(i :int, {ν :int | (i = ν) ∨ Sel(rank, i) < Sel(rank, ν)}) t

which states that for each key i, the parent ν is such that, either the
key is its own parent or the key’s rank is less than the parent’s rank.
Our system verifies that when find is called with a parent map that
satisfies the invariant, the output map also satisfies the invariant. To
do so, it automatically instantiates the refined polytype variables
in the signatures for get and set with the appropriate refinement
types, after which the rules from Section 3 (Figure 6) suffice to
establish the invariant. Similarly, our system verifies the union
function where the rank of a root is incremented when two roots
of equal ranks are linked. Thus, polymorphic refinements enable
the verification of complex acyclicity invariants of mutable data
structures.

6. Evaluation
We have implemented our type-based data structure verification
techniques in DSOLVE, which takes as input an OCAML program
(a .ml file), a property specification (a .mlq file), and a set of
logical qualifiers (a .quals file). The program corresponds to a
module, and the specification comprises measure definitions and
types against which the interface functions of the module should
be checked. DSOLVE combines the manually supplied qualifiers
(.quals) with qualifiers scraped from the properties to be proved
(.mlq) to obtain the set Q used to infer types for verification.
DSOLVE produces as output the list of possible refinement type
errors, and a .annot file containing the inferred liquid types for all
the program expressions.

Benchmarks. We applied DSOLVE to the following set of bench-
marks, designed to demonstrate: Expressiveness—that our ap-
proach can be used to verify a variety of complex properties across
a diverse set of data structures, including textbook structures, and
structures designed for particular problem domains; Efficiency—
that our approach scales to large, realistic data structure implemen-
tations; and Automation—that, due to liquid type inference, our ap-
proach requires a small set of manual qualifier annotations.
• List-sort: a collection of textbook list-based sorting rou-

tines, including insertion-sort, merge-sort and quick-sort,
• Map: an ordered AVL-tree based implementation of finite maps,

(from the OCAML standard library)
• Ralist: a random-access lists library, (due to Xi [23])
• Redblack: a red-black tree insertion implementation (without

deletion), (due to Dunfield [7])
• Stablesort: a tail recursive mergesort, (from the OCAML

standard library)
• Vec: a tree-based vector library (due to de Alfaro [5])
• Heap: a binary heap library, (due to Filliâtre [8])
• Splayheap: a splay tree based heap, (due to Okasaki [18])
• Malloc: a resource management library,
• Bdd: a binary decision diagram library (due to Filliâtre [8])
• Unionfind: the textbook union-find data structure,
• Subvsolve: a DAG-based type inference algorithm [12]

On the programs, we check the following properties: Sorted,
the output list is sorted, Elts, the output list has the same elements
as the input, Balance, the output trees are balanced, BST, the out-
put trees are binary search ordered, Set, the structure implements
a set interface, e.g., the outputs of the add, remove, merge func-
tions correspond to the addition of, removal of, union of, (resp.) the

www.manaraa.com

Program LOC Ann. T(s) Property

List-sort 110 7 11 Sorted, Elts
Map 95 3 23 Balance, BST, Set
Ralist 91 3 3 Len
Redblack 105 3 32 Balance, Color, BST
Stablesort 161 1 6 Sorted
Vec 343 9 103 Balance, Len1, Len2
Heap 120 2 41 Heap, Min, Set
Splayheap 128 3 7 BST, Min, Set
Malloc 71 2 2 Alloc
Bdd 205 3 38 VariableOrder
Unionfind 61 2 5 Acyclic
Subvsolve 264 2 26 Acyclic

Total 1754 40 297

Figure 10. Results: LOC is the number of lines of code without
comments, Property is the properties verified, Ann. is the number
of manual qualifier annotations, and T(s) is the time in seconds
DSOLVE requires to verify each property.

elements or sets corresponding to the inputs, Len, the various oper-
ations appropriately change the length of the list, Color, the output
trees satisfy the red-black color invariant, Heap, the output trees are
heap-ordered, Min, the extractmin function returns the smallest
element, Alloc, the used and free resource lists only contain used
and free resources,VariableOrder, the output BDDs have the vari-
able ordering property, Acyclic, the output graphs are acyclic. The
complete benchmark suite is available in [21].
Results. The results of running DSOLVE on the benchmarks are
summarized in Figure 6. Even for the larger benchmarks, very few
qualifiers are required for verification. These qualifiers capture sim-
ple relationships between variables that are not difficult to spec-
ify after understanding the program. Due to liquid type inference,
the total amount of manual annotation remains extremely small —
just 3% of code size, which is acceptable given the complexity of
the implementation and the properties being verified. Next, we de-
scribe the subtleties of some of the benchmarks and describe how
DSOLVE verifies the key invariants.
Sorting. We used DSOLVE to verify that implementations of var-
ious list sorting algorithms returned sorted lists whose elements
were the same as the input lists’, i.e., that the sorting functions
had type xs :α list→{ν :α list≤ | elts ν = elts xs}. We
checked the above properties on insertsort (shown in Fig-
ure 2), mergesort [23] which recursively halves the lists, sorts,
and merges the results, mergesort2 [23] which chops the list into
a list of (sorted) lists of size two, and then repeatedly passes over
the list of lists, merging adjacent lists, until it is reduced to a single-
ton which is the fully sorted list, quicksort, which partitions the
list around a pivot, then sorts and appends the two partitions, and
stablesort, from the OCAML standard library’s List module,
which is a tail-recursive mergesort that uses two mutually recursive
functions, one which returns an increasing list, another a decreas-
ing list. For each benchmark, DSOLVE infers that the sort function
has type Sorted using only the qualifier {ν ≤ ?}. To prove Elts, we
need a few simple qualifiers relating the elements of the output list
to those of the input. DSOLVE cannot check Elts for stablesort
due to its (currently) limited handling of OCAML’s pattern syntax.
Non-aliasing. Nested refinements can be useful not just to verify
properties like sortedness, but also to ensure non-aliasing across
an unbounded and unordered collection of values. As an example,
consider the two functions alloc and free of Figure 11. The
functions manipulate a “world” which is a triple comprised of: m,
a bitmap indicating whether addresses are free (0) or used (1), us,

let alloc (m, us, fs) =
match fs with
| [] ->

assert false
| p::fs’ ->

let m’ = set m p 1 in
let us’ = p::us in
((m’, us’, fs’), p)

let free (m, us, fs) p =
if get m p = 0 then
(m, us, fs)
else
let m’ = set m p 0 in
let us’ = delete p us in
let fs’ = p::fs in
(m’, us’, fs’)

Figure 11. Excerpt from Malloc

a list of addresses marked used, and fs, a list of addresses marked
free. Suppose that the map functions have types:

set :: m : (α, β) t→k :α→d :β→{ν : (α, β) t | ν = Upd(m, k, d)}
get :: m : (α, β) t→k :α→{ν :β | ν = Sel(m, k)}
We can formalize the invariants on the lists using the product type:

ρc
.
= 〈〈〉; 〈Sel(m, ν) = c; >〉〉

σc
./

.
= (ρc) int list./

RES./
.
= 〈m : (int, int) t, us :σ1

./, fs :σ0
./〉

The function alloc picks an address from the free list, sets the used
bit of the address in the bitmap, adds it to the used list and returns
this address together with the updated world. Dually, the function
free checks if the given address is in use and, if so, removes it
from the used list, unsets the used bit of the address, and adds it to
the free list. We would like to verify that that the functions preserve
the invariant on the world above, i.e.,

alloc :: RES→〈RES , int〉, free :: RES→int→RES .

However, the functions do not have these types. Suppose that
the free list, fs, passed to alloc, contains duplicates. In particular,
suppose that the head element p also appears inside the tail fs′. In
that case, setting p’s used bit will cause there to be an element of
the output free list fs′, namely p, whose used bit is set, violating
the output invariant. Hence, we need to capture the invariant that
there are no duplicates in the used or free lists, i.e., that no two
elements of the used or free lists are aliases for the same address.
In our system, this is expressed by the type int list6=, as defined
by (1). Hence, If the input world has type RES 6=, then when p’s bit
is set, the SMT solver uses the array axioms to determine that for
each ν 6= p, Sel(m′, ν) = Sel(m, ν) and hence, the used bit of each
address in fs′ remains unset in the new map m′. Dually, our system
infers that the no-duplicates invariant holds on p :: us as p (whose
bit is unset in m) is different from all the elements of us (whose bits
are set in m). Thus, our system automatically verifies:

alloc :: RES 6=→〈RES 6=, int〉, free :: RES 6=→int→RES 6=

Maps. We applied DSOLVE to verify OCAML’s tree-based func-
tional Map library. The trees have the ML type:

type (’a,’b) t =
E | N of ’a * ’b * (’a,’b) t * (’a,’b) t * int

The N constructor takes as input a key of type ’a, a datum of
type ’b, two subtrees, and an integer representing the height of the
resulting tree. The library implements a variant of AVL trees where,
internally, the heights of siblings can differ by at most 2. A binary
search tree (BST) is one where, for each node, the keys in the left
(resp. right) subtree are smaller (resp. greater) than the node’s key.
A tree is balanced if, at each node, the heights of its subtrees differ
by at most two. Formally, after defining a height measure ht:

measure ht = E -> 0 | N (_,_,l,r,_) ->
if ht l < ht r then 1 + ht r else 1 + ht l

www.manaraa.com

the balance and BST invariants are respectively specified by:

(ρbal) µt. E + N〈k :α, d :β, l : t, r : t, h :int〉 (Balance)
µt. E + N〈k :α, d :β, l : (ρ<) t, r : (ρ>) t, h :int〉 (BST)

ρ./
.
= 〈〈〉; 〈ν ./ k; >; >; >; >〉〉 for ./ ∈ {<, >}

ρbal
.
= 〈〈〉; 〈>; >; >; eb; eh〉〉

eh
.
= (ht l < ht r)?(ν = 1 + ht r) : (ν = 1 + ht l)

eb
.
= (ht l − ht ν ≤ 2) ∧ (ht ν − ht l ≤ 2)

DSOLVE verifies that all trees returned by API functions are bal-
anced binary search trees, that no programmer-specified assertion
fails at run-time, and that the library implements a set interface.
Vectors. We applied DSOLVE to verify various invariants in a li-
brary that uses binary trees to represent C++-style extensible vec-
tors [5]. To ensure that various operations are efficient, the heights
of the subtrees at each level are allowed to differ by at most two.
DSOLVE verifies that that all the trees returned by API functions,
which include appending to the end of a vector, updating values,
deleting sub-vectors, concatenation, etc., are balanced, vector oper-
ations performed with valid index operands, i.e., indices between 0
and the number of elements in the vector don’t fail (Len1), and that
all functions passed as arguments to the iteration, fold and map pro-
cedures are called with integer arguments in the appropriate range
(Len2). For example, DSOLVE proves:

iteri :: v :α t→({0 ≤ ν < len v}→α→unit)→unit

That is, the second argument passed to the higher-order iterator is
only called with inputs between 0 and the length of the vector, i.e.,
the number of elements in each vector. DSOLVE found a subtle bug
in the rebalancing procedure; by using the inferred types, we were
able to find a minimal and complete fix which the author adopted.
Binary Decision Diagrams. A Binary Decision Diagram (BDD)
is a reduced decision tree used to represent boolean formulas. Each
node is labeled by a propositional variable drawn from some or-
dered set x1 < . . . < xn. The nodes satisfy a variable ordering in-
variant that if a node labeled xi has a child labeled xj then xi < xj .
A combination of hash-consing/memoization and variable ordering
ensures that each formula has a canonical BDD representation. Us-
ing just three similar, elementary qualifiers, DSOLVE verifies the
variable ordering invariant in Filliâtre’s OCAML BDD library [8].
The verification requires recursive refinements to handle the order-
ing invariant and polymorphic refinements to handle the memoiza-
tion that is crucial for efficient implementations. The type used to
encode BDDs, simplified for exposition, is:

type var = int
type bdd = Z of int | O of int

| N of var * bdd * bdd * int

where var is the variable at a node, and the int elements are hash-
cons tags for the corresponding sub-BDDs. To capture the order
invariant, we write a measure that represents the index of the root
variable of a BDD:

measure var = Z _ | O _ -> maxvar + 1
| N (x,_,_,_) -> x

where maxvar is the total number of propositional variables being
used to construct BDDs. After defining

bdd
.
= µt. Z int + O int + N〈x :int, t, t, int〉

ρV
.
= 〈〈>〉; 〈>〉; 〈>; (x < var ν); (x < var ν); >〉〉

we can specify BDDs satisfying the variable ordering
VariableOrder invariant as (ρV) bdd. The following code
shows the function that computes the BDD corresponding to the
negation of the input x, by using the table cache for memoization.

let mk_not x =
let cache = Hash.create cache_default_size in
let rec mk_not_rec x =
if Hash.mem cache x then Hash.find cache x else
let res = match x with
| Z _ -> one | O _ -> zero
| N (v, l, h, _) ->

mk v (mk_not_rec l) (mk_not_rec h) in
Hash.add cache x res; res in

mk_not_rec x

Using the polymorphically refined signatures for the hash table op-
erations (set, get, etc. from Section 5), with the proviso, already
enforced by OCAML, that the key’s type be treated as invariant,
DSOLVE is able to verify that variable ordering (VariableOrder) is
preserved on the entire library. To do so, DSOLVE uses the quali-
fier var ? ≤ var ν to automatically instantiate the refined poly-
type variables α and β〈x :α〉 in the signatures for Hash.find and
Hash.add with bdd and {ν :bdd | var x ≤ var ν}, which, with
the other rules, suffices to infer that:

mk not :: x :bdd→{ν :bdd | var x ≤ var ν}

Bit-level Type Inference. We applied DSOLVE to verify an imple-
mentation of a graph-based algorithm for inferring bit-level types
from the bit-level operations of a C program [12]. The bit-level
types are represented as a sequence of blocks, each of which is rep-
resented as a node in a graph. Mask or shift operations on the block
cause the block to be split into sub-blocks, which are represented
by the list of successors of the block node. Finally, the fact that
value-flow can cause different bit-level types to have unified sub-
sequences of blocks is captured by having different nodes share
successor blocks. The key invariant maintained by the algorithm
is that the graph contains no cycles. DSOLVE combines recursive
and polymorphic refinements to verify that the graph satisfies an
acyclicity invariant like DAG from (3) in Section 2.2.

6.1 Limitations and Future Work
Our case studies reveal several expressiveness limitations of our
system. Currently, simple modifications allow each program to
typecheck. We intend to address these limitations in future work.
First-order Refinements. To preserve decidability, our EUFA em-
bedding leaves all function applications in the refinement predi-
cates uninterpreted. This prevents checking quicksort with the
standard higher-order partition function:

part :: α list→p : (α→bool)→{p(ν)} list ∗ {¬p(ν)} list
where p is the higher-order predicate used for partitioning. The
function applications p(ν) in part’s output type are left uninter-
preted, so we cannot use them in verification. Instead, we change
the program so that the type of p is α→(β, γ) either where
(β, γ) either has constructors T of β and F of γ. The new part
function then collects T and F values into a pair of separate lists.
Thus, if w is the pivot, we can verify quicksort by passing part
a higher-order predicate of type:

α→({ν :α | ν ≥ w}, {ν :α | ν < w}) either.

Existential Witnesses. Recall that expressing the key acyclicity in-
variant in union-find’s find function (Section 5.2) required refer-
encing the rank map. Although rank is not used in the body of
the find function, omitting it from the parameter list causes this
acyclicity invariant to be ill-formed within find. Instead of compli-
cating our system with existentially quantified types, we add rank
as a witness parameter to find. Similarly, notice that the list ob-
tained by appending two sorted lists xs and ys is sorted iff there
exists some w such that the elements of xs (resp. ys) are less than

www.manaraa.com

(resp. greater than) w. In the case of quicksort, this w is exactly
the pivot. Hence, we add w as a witness parameter to append, and
pass in the pivot at the callsite, after which the system infers:

append :: w :α→{ν ≤ w} list≤→{w ≤ ν} list≤→α list≤

and hence that quicksort has type Sorted. Similar witness param-
eters are needed for the tail-recursive merges used in stablesort.
Context-Sensitivity. Finally, there were cases where functions
have different behavior in different calling contexts. For example,
stablesort uses a function that reverses a list. Depending upon
the context, the function is either (1) passed an increasing list as
an argument and returns a decreasing list as output, or, (2) passed
a decreasing list as an argument and returns an increasing list. Our
system lacks intersection types (e.g., [7]), and we cannot capture
the above, which forces us to duplicate code at each callsite. In
our experience so far, this has been rare (out of all our benchmarks,
only one duplicate function in stablesort was required), but nev-
ertheless, in the future, we would like to investigate how our system
can be extended to intersection types.

7. Related Work
Indexed Type based approaches use types augmented with indices
which capture invariants of recursive types [24, 4, 7]. Recursive re-
finements offer several significant advantages over indexed types.
First, they compose more easily. While indexed types can be used
to specify invariants like sortedness and binary-search-ordering, ex-
pressing additional invariants requires the programmer to add more
type indices, altering both the type and functions defined on that
type. Thus, it is cumbersome to use indices to encode auxiliary in-
variants: e.g., one must manually define different types (and con-
structors) to describe decreasing lists, or sorted lists with elements
in some range, as well as different functions to manipulate data
of these types. In contrast, by separating the refinements from the
underlying types, we allow the programmer to compose different
refinements with the same type skeleton, which is essential to the
usability of the system. Second, no inference algorithm for indexed
types has been demonstrated, which greatly limits their usability
due to the drastically increased annotation burden; the programmer
must annotate all functions and polymorphic instantiations. For ex-
ample, at each call to Hash.add, the programmer would have to
specify the appropriate indexed type instantiations for the type vari-
ables α, β. In contrast, by separating the refinements from the un-
derlying types, and uniformly representing refinements as conjunc-
tions of qualifiers, our system permits inference, which is essential
for usability.
Hoare Logic based approaches require that the programmer write
pre- and post-conditions and loop invariants for functions in a rich,
higher-order specification logic. From these and the code, verifi-
cation conditions (VCs) are generated whose validity implies that
the code meets the specification. The VCs are then proved using
automatic [13] or interactive theorem proving [17, 26, 20]. These
approaches allow for the specification of far more expressive prop-
erties than is possible in our system. However, they require signif-
icantly more manual effort in interacting with the prover. Of the
above proposals, the latter three have equal or more expressiveness
than our approach, but require, at a conservative estimate, annota-
tions amounting to more than three times the code size to prove
similar properties. A direct comparison is difficult as [17, 26] con-
sider lower-level languages and [20] considers some different prop-
erties. Nevertheless, the order-of-magnitude annotation reduction
proves the utility of our approach.
Abstract Interpretation based approaches focus on inferring
lower-level shape properties (e.g., that a structure is a singly-linked
list or tree) in the presence of destructive heap updates. These

techniques work by carefully controlling generalization (i.e., “blur-
ring”) and instantiation (i.e., “focusing”) using a combination of
user-defined recursive predicates [14, 25] and abstract domains tai-
lored to the structure being analyzed [10, 3]. Our insight is that
in high-level languages, shape invariants can be guaranteed using
a rich type system. Furthermore, by piggybacking refinements on
top of the types, one can use abstract interpretation (in the form of
liquid type inference) to verify properties which have hitherto been
beyond the scope of automation. In future work we would like to
apply our techniques to lower-level languages, by first using shape
analysis to reconstruct the recursive type information, and then us-
ing recursive and polymorphic refinements over the reconstructed
shapes to verify high-level properties.
Acknowledgments. We thank Robbie Findler and Amal Ahmed
for valuable discussions about Polymorphic Refinements.

References
[1] A. W. Appel. SSA is functional programming. SIGPLAN Notices,

33(4), 1998.
[2] L. Augustsson. Cayenne - a language with dependent types. In ICFP,

1998.
[3] B. E. Chang and X. Rival. Relational inductive shape analysis. In

POPL, pages 247–260, 2008.
[4] S. Cui, K. Donnelly, and H. Xi. Ats: A language that combines

programming with theorem proving. In FroCos, 2005.
[5] Luca de Alfaro. Vec: Extensible, functional arrays for ocaml.

http://www.dealfaro.com/vec.html.
[6] L. de Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS,

pages 337–340, 2008.
[7] Joshua Dunfield. A Unified System of Type Refinements. PhD thesis,

Carnegie Mellon University, Pittsburgh, PA, USA, 2007.
[8] J.C. Filliâtre. Ocaml software. http://www.lri.fr/ filli-

atr/software.en.html.
[9] C. Flanagan. Hybrid type checking. In POPL. ACM, 2006.

[10] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters
to quantified logical domains. In POPL, pages 235–246, 2008.

[11] F. Henglein. Type inference with polymorphic recursion. ACM
TOPLAS, 15(2):253–289, 1993.

[12] R. Jhala and R. Majumdar. Bit-level types for high-level reasoning.
In FSE. ACM, 2006.

[13] S. K. Lahiri and S. Qadeer. Back to the future: revisiting precise
program verification using smt solvers. In POPL, 2008.

[14] T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static
analyses. In SAS, LNCS 1824, pages 280–301. Springer, 2000.

[15] John McCarthy. Towards a mathematical science of computation. In
IFIP Congress, pages 21–28, 1962.

[16] Alan Mycroft. Polymorphic type schemes and recursive definitions.
In Symposium on Programming, pages 217–228, 1984.

[17] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: Reasoning with the awkward squad. In ICFP, 2008.

[18] C. Okasaki. Purely Functional Data Structures. CUP, 1999.
[19] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[20] Y. Regis-Gianas and F. Pottier. A Hoare logic for call-by-value

functional programs. In MPC, 2008. To appear.
[21] P. Rondon, M. Kawaguchi, and R. Jhala. Type based data structure

verification. http://pho.ucsd.edu/liquid.
[22] P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI,

pages 158–169, 2008.
[23] H. Xi. DML code examples. http://www.cs.bu.edu/fac/hwxi/DML/.
[24] H. Xi and F. Pfenning. Dependent types in practical programming. In

POPL, pages 214–227, 1999.
[25] H. Yang, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. W.

O’Hearn. Scalable shape analysis for systems code. In CAV, 2008.
[26] K. Zee, V. Kuncak, and M. C. Rinard. Full functional verification of

linked data structures. In PLDI, pages 349–361, 2008.

	Introduction
	Overview
	Recursive Refinements
	Polymorphic Refinements

	Language
	Recursive Refinements
	Syntax and Dynamic Semantics
	Static Semantics
	Type Inference

	Polymorphic Refinements
	Syntax
	Static Semantics

	Evaluation
	Limitations and Future Work

	Related Work

